At present, titanium-based biomaterials for the production of prosthetic devices have achieved a satisfactory quality level; current research aims at improving their surgical dependability and biomechanical performances. In this contest, a crucial aspect is represented by the osseointegration process, which implies the secure association of endosseous devices with the surrounding biological tissue. Osseointegration is largely controlled by surface characteristics with regard to both chemical composition and morphological properties. Therefore, the design of such devices might be guided by the characterization of surface morphology produced by mechanical and chemical treatments.\r\n \r\nThis paper illustrates the results obtained by the application of a set of treatments on titanium (Ti2) and Ti6Al4V alloy (Ti5) samples. Mechanical treatments mainly affect the dimension of larger defects, acting on a macrometric scale and inducing specific patterns; chemical treatments (i.e., acid attack at room or higher temperature) can dissolve surface material altering defect dimensions on a micrometric scale.\r\n \r\nThis study may represent a useful tool for the rational design of implant surface characteristics.
Loading....